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Big Data in Economics: Evolution or Revolution?
Christine De Mol  Eric Gautier” Domenico Giannone®
Sendhil Mullainathan? Lucrezia Reichlin® Herman van Dijk/

Jeffrey Wooldridge®

Abstract

The Big Data Era creates a lot of exciting opportunities for new developments
in economics and econometrics. At the same time, however, the analysis of large
data sets poses difficult methodological problems which should be addressed in an
appropriate way and are the subject of the present chapter.

14.1 Introduction

‘Big Data’ has become a buzzword both in academic circles and in business and
policy circles. It is used to cover a variety of data-driven phenomena that have very
different implications for empirical methods. This chapter discusses some of these
methodological challenges.!

In the simplest case, ‘Big Data’ means a large data set that has otherwise a stan-
dard structure. For example, Chapter 13 describes how researchers are increasingly
gaining access to administrative data sets or business records covering entire popu-
lations rather than population samples. The size of these data sets allows for better
controls and more precise estimates and is a bonus for researchers. This may raise
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challenges for data storage and handling, but it does not raise any distinct method-
ological issues.

However, ‘Big Data’ often means much more than just large versions of standard
datasets. First, large numbers of units of observation often come with large num-
bers of variables. That is large numbers of possible covariates. To illustrate with
the same example, the possibility to link different administrative data sets increases
the number of variables attached to each statistical unit. Likewise, business records
typically contain all interactions of the customers with the business. This can cre-
ate a tension in the estimation between the objective of ‘letting the data speak’ and
obtaining accurate (in a way we will make precise) coefficient estimates. Second,
Big Data sets often have a very different structure from the those we are used to in
economics. This includes web search queries, real-time geo-locational data or so-
cial media to name a few. This type of data raises questions about how to structure
and possibly re-aggregate them.

The chapter starts with a description of the ‘curse of dimensionality’ which arises
from the fact that both the number of units of observations and the number of vari-
ables associated with each unit are large. This feature is present in many of the Big
Data applications of interest to economists. One extreme example of this problem
occurs when there are more parameters to estimate than observations. In this case
standard estimators (such as ordinary least squares) do not yield a unique solu-
tion. The section, which borrows heavily from De Mol et al. (2008), describes the
econometric problems raised by the curse of dimensionality. It describes some of
the methodological solutions, called regularisation methods, that have been pro-
posed.

Section 14.3 then discusses recent research on recovering policy effects using
Big Data. In many fields in economics, we are interested in measuring a (causal) re-
lationship between some variable of interest (for example, a policy) and its effects.
In other words, although there might be many variables, some of them (related to a
specific policy) are of special interest to the researcher. The section describes cur-
rent efforts to develop methods that combine the ability of regularisation methods
to harness the information contained in these richer data sets, with the possibility
to identify the impact of specific policy relevant effects.

Section 14.4 turns to prediction problems. In prediction problems, we are not
interested in specific coefficients per se but in our ability to forecast a variable of
interest, e.g., inflation, growth or the probability of default. Forecasting has a long
tradition in macroeconomics and the greater availability of highly granular micro-
data is renewing interest in prediction problems at the microeconomic level too. A
priori, regularisation methods are well-suited for this type of problem. However,
‘off-the-shelf’ regularisation methods are agnostic regarding the data generation
process. The section argues, on the basis of the experience with macro forecasting
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models, for the need to develop regularisation methods that account for the speci-
ficities of the data generation processes in economics, such as serial correlation or
mixed frequencies.

Recent progress in computing power and storage capacities has allowed re-
searchers to handle and analyse increasingly big data sets. For some of the Big
Data (e.g., high frequency trading data, browsing data), this may not be enough.
Section 14.5 discusses how simulation-based methods can be refined to leverage
the potential of parallel computing.

Section 14.6 concludes. The availability of unprecedented amounts of data offers
exciting research opportunities in economics. While researchers will be able to ex-
ploit some of the methods developed in other fields, such as statistics and computer
science, it is nevertheless essential that some of these methods be tailored to the
specificities of economic research questions and economic data. On these fronts,
there is still much to be done.

14.2 The Curse of Dimensionality and Regularisation

An early occurrence of the term ‘Big Data’ in economics is to be found in a dis-
cussion by Diebold (2003, 2012). To quote “I stumbled on the term Big Data in-
nocently enough, via discussion of two papers that took a new approach to macro-
econometric dynamic factor models (DFMs), Reichlin (2003) and Watson (2003),
presented back-to-back in an invited session of the 2000 World Congress of the
Econometric Society.”

The two authors referenced above were presenting their research on factor mod-
els in high-dimensional time series (Forni et al. (2000); Stock and Watson (2002)),
which mainly consisted in deriving asymptotic results for the case where both the
number of time samples and the cross-sectional dimension, i.e., the number of time
series, tend to infinity. The approach relied on a factor model dating back to Cham-
berlain and Rothschild (1983) in finance, but generalised to take serial correlation
into account. Stock and Watson (2002) considered so-called ‘static’ factor mod-
els whereas Forni et al. (2000) derived asymptotics in the case of ‘dynamic’ factor
models. The estimators they used are based on a few principal components either
in the time domain for the static case or in the Fourier domain for the dynamic
case. This factor-model literature was probably the first in economics to address
the difficulties arising from the high dimensionality of the data, albeit under rather
strong assumptions (namely factor models) on the data generating process.

In statistics, the difficulties pertaining to the analysis of high-dimensional data
are well-known issues, often referred to as the ‘curse of dimensionality’. Some of
the facets of this curse can be explained using the familiar example of the linear re-
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gression model. To introduce some background notation useful for our discussion,
let

Y=XB+U (14.1)

where X is a n X p matrix containing the observed predictors (covariates), Y is
the outcome or n x 1 vector of the observed responses and U is an unobserved
zero-mean error or nuisance term. The p x 1 vector § contains the regression co-
efficients. In the case of time series, n is the number of time samples and p is the
number of time series used for prediction. In the case of cross section data, n is the
number of observations and p is the number of covariates. In the discussion in this
section, we will consider the matrix X as deterministic.

Depending on the application under study, two different problems can be high-
lighted. The first one is prediction (also referred to as ‘generalisation’ by the machine-
learning community), in which case one is only interested in estimating the out-
come for future times or new examples to come. This requires the estimation of
the regression parameters, but only as an auxiliary step to the estimation of the
outcome. The second problem, the identification of the model, pertains more to
the vector B of regression coefficients itself, in the linear regression example in
(14.1). This is essential for interpreting the estimated coefficients in terms of their
relevance in predicting the response. For example, some coefficients can be zero,
indicating that the corresponding predictors are not relevant for this task. The de-
termination of these zeroes, hence of the relevant/irrelevant predictors, is usually
referred to as ‘variable selection’.

As is well known, the most straightforward solution for the linear regression
problem is Ordinary Least Squares (OLS). The OLS estimator for 3 in (14.1) min-
imises the least-squares loss

o(B) =Y - X3, (14.2)
where ||[Y|l2 = /X7 [Yi|? is the L,-norm of the vector Y. It is given by
Bois = (X'X) XY (14.3)

(X’ denotes the transpose of the matrix X).

For the OLS estimator, expression (14.3), to make sense we need the p X p
matrix X'X to be of full rank, hence invertible. This cannot be the case in high-
dimensional situations where the number of coefficients, p, is larger than the num-
ber of observations, 7. 2 In that case, the minimiser of the least-squares loss is non-
unique, but uniqueness can be restored by selecting the so-called ‘minimum-norm
least-squares solution’, orthogonal to the null-space, i.e., by ignoring the subspace
corresponding to the zero eigenvalues.

2 Since this implies the existence of a non-trivial null-space for X'X, with at least p — n zero eigenvalues.
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Notice that although this remedy may work well for prediction, the identifica-
tion problem remains hindered by this non-uniqueness issue. An additional diffi-
culty arises when the matrix X'X has eigenvalues that are close to zero, or, more
precisely, when its ‘condition number’, i.e., the ratio between the largest and the
smallest of its nonzero eigenvalues, becomes large. Such situation prevents a sta-
ble determination of the least-squares (or minimum-norm least-squares) estima-
tor: small fluctuations in the outcome vector Y will be amplified by the effect of
the small eigenvalues and will result in large uncontrolled fluctuations (high vari-
ance/volatility) on the estimation of 3, again preventing meaningful identification.

The pathologies described above contribute to what is often referred to as the
‘curse of dimensionality’ or else the ‘large p, small n paradigm’ in high-dimen-
sional statistics. As early as in the fifties, Stein (1956) introduced a ‘high-dimen-
sional’ surprise in statistics by showing that the maximum-likelihood estimator of
the unknown mean vector of a multivariate Gaussian distribution is not “admis-
sible” in dimension higher than three, i.e., that it is outperformed by ‘shrinkage’
estimators. Heuristically, ‘shrinking’ means that a naive estimate is improved by
combining it with other information or priors.

Many remedies have been proposed to address these pathologies, under the com-
mon appellation of ‘regularisation methods’, which provide in one form or another
the dimensionality reduction which is necessary to reduce the variance/volatility of
the unstable estimators or in other words to avoid ‘overfitting’. Overfitting refers
to the fact that, when using a model with many free parameters (here the p compo-
nents of f3), it is easy to get a good fit of the observed data, i.e., a small value for the
residual (14.2), but that this does not imply that the corresponding (unstable) value
of B will have a good predictive power for responses corresponding to new ob-
servations. For time series, good in-sample fit does not imply good out-of-sample
forecasts.

Box 1: Principal Component Regression (PCR)
The Principal Component Regression consists in estimating 3 by

BApcr —

i

k(X'Y,V;
_1< & >V,~ (14.4)

where the V;’s are the eigenvectors of X'X with eigenvalues 5,-2, and (-, )
denotes the scalar product.

One of the simplest regularisation methods is principal component regression
(PCR), a statistical procedure that transforms the possibly correlated variables into
a smaller number of orthogonal new variables (the components), see Box 1. The
truncation point k for the number of components, usually much smaller than the
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true rank of X’X, has to be carefully chosen to overcome the instabilities. In this
method, also referred to as ‘Truncated Singular Value Decomposition’ (TSVD), the
truncation introduces a bias in order to reduce the variance.

Until recently alternative estimators were less well known in econometrics. Other
regularisation methods introduce constraints or penalties on the vector 3 of the re-
gression coefficients. Probably the oldest penalised regression method is ‘Ridge re-
gression’, see Box 2, due to Hoerl and Kennard (1970). This method is also known
in the applied mathematics literature as Tikhonov’s regularisation. It consists in
adding to the least-squares loss a penalty proportional to the size of §, measured
by its squared L-norm. As for the truncation point in PCR, the regularisation pa-
rameter has to be chosen carefully in order to provide a proper balance between
the bias introduced by shrinkage and the variance of the estimator and its value is
usually determined by cross-validation.

Box 2: The Ridge Regression Estimator
The ridge regression estimator is given by

Brizge = argming [|[Y —XB|3+ 2| 3]

= (X'X+ A1) 'X'Y (143

where I is the identity matrix and A, > 0 is the so-called ‘regularisation
parameter’, which, as seen from (14.5), reduces the impact the smallest
eigenvalues of X'X, at the origin of the instability of the OLS estimator.

Ridge regression introduces a form of linear ‘shrinkage’, where the components
of ﬁols are shrunk uniformly towards zero, as can be easily seen in the case of or-
thonormal regressors (i.e., for X’X = I), where ﬁ,,-dge = ﬁ X'Y. More generally,
quadratic penalties provide estimators which depend linearly on the response Y
but do not allow for variable selection, since typically all regression coefficients
are different from zero.

An alternative to quadratic penalties that allows for variable selection by en-
forcing sparsity, i.e., the presence of zeroes in the vector  of the regression co-
efficients, has been popularised in the statistics and machine-learning literature by
Tibshirani (1996) under the name of ‘Lasso regression’. It consists in replacing the
Lr-norm penalty used in ridge regression by a penalty proportional to the L;-norm
of B, see Box 3.

Hence, the Lasso penalty provides a nonlinear shrinkage of the components of
Bols, which are shrunk differently according to their magnitude, as well as sparsity,
since the jth coefficient [ﬂam] j = 0if [[X'Y];| < A1/2. Unfortunately, there is no
closed-form expression for ﬁlum in the case of general matrices X and the Lasso
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estimator has to be computed numerically as the solution of a (nonsmooth) convex
optimisation problem.

Box 3: The Lasso Regression Estimator

Lasso consists in replacing the L,-norm penalty used in ridge regression
by a penalty proportional to the L;-norm of B, i.e. to the sum of the
absolute values of the regression coefficients, ||| = 5.’:1 |B;l. yielding
the estimator

Biasso = argming [[|Y —XBII5+ A1 [|B[I1] - (14.6)

In the special case of orthonormal regressors (X'X = I), the Lasso esti-
mator is easily seen to be given by

[ﬁlasso]j = S)Ll ([X/Y]j)
where S, (x) is the ‘soft-thresholder’ defined by

x+A/2  if x<-A/2
S)Ll (X) = 0 if \x| < 11/2
x—=A/2 if x>A/2.

The previous estimators can be given a Bayesian interpretation, since BOIS can be
viewed as the maximum (log-)likelihood estimator for a Gaussian error term and
the penalized maximum likelihood estimators B,,-dge and Blass(, can be interpreted
as maximum a posteriori (MAP) estimators, the penalty resulting from a prior dis-
tribution for the regression coefficients. In Ridge regression, it corresponds to a
Gaussian prior whereas in Lasso regression it is a Laplacian or double-exponential
prior.

The regularisation techniques described above are paradigmatic since they con-
vey the essential ideas in dealing with high-dimensional settings. There are how-
ever numerous extensions and generalisations. For example, more general types of
penalties can be used such as ||B||7 = 5’:1 |Bj|”, i.e., the L,-norms used in ‘bridge
regression’ (Frank and Friedman (1993)). Notice that in this family, though, only
the choice Y = 1 yields both convexity and sparsity. Moreover, weights or even a
non-diagonal coupling matrix can be introduced in the penalty to cover the case
of non i.i.d. (independent and identically distributed) regression coefficients. Com-
posite penalties are also used e.g., in elastic-net or group-lasso regularisation. Fi-
nally, different loss functions can be considered such as those used in robust statis-
tics, logistic regression, etc. A good pointer to this variety of techniques is the book
by Hastie et al. (2009).

Let us remark that global variable selection methods, preferably convex to fa-
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cilitate computation, such as the Lasso and its relatives, are essential to deal with
high-dimensional situations. Indeed, considering all possible submodels and se-
lecting the best among them, for example according to the Akaike Information
Criterion (AIC) proposed by Akaike (1974) or the Bayesian Information Criterion
(BIC) proposed by Schwarz (1978), leads to a complexity growing exponentially
with the number of variables involved and renders the methods totally unpractical.
To paraphrase the title of a paper by Sala-I-Martin (1997): “You cannot just run
two million regressions!” (and, incidentally, two million would not even suffice for
p = 22).

As concerns asymptotic and consistency results, the settings have to go beyond
the classical scheme of keeping the number of parameters p constant (and usually
small) while letting the number of observations n of the dependent variable tend to
infinity. In high-dimensional situations, both n and p may tend to infinity, while as-
suming or not some relationship between their respective growth rates. The theory
is more subtle in this case and is still developing. This question has been studied
for principal component regression for time series under a factor model assump-
tion. Results in this line for the case of penalised regression, and in particular of
Ridge regression, have been derived by De Mol et al. (2008, 2015). The first paper
also contains an empirical part where predictive accuracy of PCR, Ridge and Lasso
regression is evaluated based on a data set of about 100 time series. It is shown that
all three methods perform similarly and that results of Lasso are uninformative
when used for applications where, which is typically the case for macroeconomics,
data are cross-correlated. Moreover, in that case Lasso is unstable in selection.

14.3 Policy Analysis and Causal Inference

In the actual big data activity sphere, in parallel with the developments of powerful
machine-learning techniques, the emphasis is on predictive rather than on causal
models. As we shall further discuss in the next section, successful predictive algo-
rithms are rapidly developing in response to the increasing demand coming from
all kinds of applications. These algorithms convert large amount of unstructured
data into predictive scores in an automatic way and often in real time.

Whether this trend is or not desirable may be a matter of debate but it is clear
that it implies a significant shift from the single-covariate causal-effect framework
that has dominated much empirical research especially in microeconomics. Being
non-structural, predictive models are subject to the Lucas critique (Lucas (1976))
and their success should not obscure the fact that many economic applications are
about inference on a causal effect. In microeconomics, for example, a successful
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literature has developed methods to assess the effectiveness of a given policy or
treatment.

In the case where the intervention is binary in nature, we define a binary variable,
W, equal to unity for the treatment group and zero for the control group. One
typically has in mind a counterfactual setting, where it makes sense to think of
potential outcomes for each unit in the control and treated states. These outcomes
are often denoted Y (0) and Y (1), and then we observe the treatment status, W,
and the outcome under the corresponding treatment status, ¥ = (1 — W)Y (0) +
WY (1) =Y(0)+W[Y(1)—Y(0)]. For unit i in the population, the treatment effect
is ¥;(1) — ¥;(0) — which is not observed. Instead, attention typically centers on the
average treatment effect, 7 = E[Y (1) — Y (0)], or the average over an interesting
subpopulation (such as those actually receiving the treatment). A special case is
when the treatment effect is constant, in which case we can write Y = tW + Y (0),
and the Y (0) plays the role of the unobserved factors affecting Y.

The potential outcomes setting can be extended to cases where the policy vari-
able, W, is not binary. If the policy effect is constant across units and across levels
of the treatment, we can write a simple regression equation

Y =1W+R, 14.7)

where Y, W and R are random variables and 7 is a scalar coefficient of interest. We
(eventually) observe data on Y and W. The variable R includes unobserved factors
— Y (0) in the simplest setting — affecting Y.

In medicine and the experimental sciences, truly randomised experiments can
be carried out, which means the treatment level W can be made independent of
R. For example, when W is binary, we can randomly assign individuals into the
treatment and control groups. In such cases, (14.7) can be estimated using simple
regression, which delivers an unbiased and consistent estimator of 7. In economics,
random assignment is much less common, and in general one has only access to
so-called observational — not experimental — data. Hence, several strategies when
randomised assignment is not available have been developed. Here we review a
few of those strategies, highlighting how high-dimensional regression methods can
be applied to estimating causal effects. Good pointers to part of the relevant work
in this field are the review papers by Belloni et al. (2013, 2014a).

A traditional and still commonly used method to handle nonrandom treatment
assignment is regression adjustment, where one assumes the availability of covari-
ates that render the policy assignment appropriately “exogenous.” Let X bea 1 x p
vector of covariates. Then, if X is thought to predict both Y and the treatment as-
signment, W, we can “control for” X in a multiple regression analysis. These leads
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to a linear model,

Y=tW+XB+U, (14.8)

where now R = X3 + U and, if the elements of X suitably control for the nonran-
dom assignment, the treatment and covariates satisfy the exogeneity conditions

E[WU] =0, E[XU] = 0. (14.9)

If p, the number of control variables, is large and the p x 1 vector f is sparse,

the model can be estimated by means of a Lasso regression, as described in the

previous section. However, one has to know in advance the right vector X such

that, under the usual exogeneity conditions (14.9), there are no more confounding

variables and one recovers the marginal effect 7, holding fixed everything else.
One can relax the linearity assumption in X and just assume

E[R|W,X]| =E[R|X], (14.10)
which yields
Y =tW+g(X)+U, (14.11)

where g(X) = E[R|X] and U = R — E[R|W, X] is such that E[U|W,X]| = 0. Model
(14.11) is a so-called partially linear model and g is generally a nonparametric
function. Belloni et al. (2014b) use Lasso-type methods to nonparametrically par-
tial out X from both ¥ and W. They approximate the mean functions E[Y|X] and
E[W|X] using functions of the form 27:1 Bj¢;(X), for a large dictionary of func-
tions (qb{,-)f:l, and build a confidence interval around 7. This method is particularly
appealing as it does not require one to chose a bandwidth to estimate the nonpara-
metric conditional mean functions. If the approximations Z;’:l Bj¢;(X) are sparse,
then the method selects the significant ¢;(X) for each of E[Y|X] and E[W|X]. As
shown in Belloni et al. (2014a), using the union of the functions selected from the
methods in a standard regression analysis with Y as the response variable and W
as the other regressor, the usual heteroscedasticity-robust standard error produces
valid ¢ statistics and confidence intervals. It should be emphasised that, while the
approach works well for selecting functions of X that appear in the conditional
mean, it does not select the variables X such that (14.10) holds; the researcher is
assumed to have already selected the appropriate controls.

When (14.9) or (14.10) do not hold, we can rely on instrumental variables,
namely, assume to have at our disposal a vector of random variables Z, called
instrumental variables, such that in (14.7),

Cov[Z,R] = 0. (14.12)
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This yields the relation
Cov[Z,Y] = tCoV[Z,W]. (14.13)

If Z is a scalar, (14.13) identifies T when Cov[Z, W] # 0. When we have more than
one instrumental variable for W, two stage least squares (2SLS) is a common es-
timation approach. However, 2SLS only uses the linear projection of W on Z in
forming instruments. If we strengthen the exogeneity requirement to E[R|Z] = 0,
2SLS is asymptotically inefficient if E[W|Z] is nonlinear or Var[R|Z] is not con-
stant. If we assume homoscedasticity in (14.7), that is, Var[R|Z] = Var[R], then the
optimal instrument for W is given by E[W|Z], the best mean square predictor of
W. Belloni et al. (2012) propose to use Lasso-type methods to estimate the regres-
sion function E[W|Z] using a large dictionary of approximating functions, and they
show how to conduct inference on 7 using a heteroscedastic-robust standard errors.

Gautier and Tsybakov (2011) propose an instrumental variables method to make
inference for high-dimensional structural equations of the form

Y=XB+U (14.14)

where the dimension of X is large (and may include exogenous and endogenous
variables). This occurs, for example, in large demand systems, or when treatment
variables are interacted with (exogenous) group dummies. In the latter case, the
policy might have an effect on only certain groups and the policy maker would like
to determine for which group the policy has an effect. The instrumental variables
literature has identified various problems: (i) the instrumental variable candidates,
Z, might not be exogenous; (ii) the instrumental variables can be ‘weak’ and es-
timating in a first-stage a reduced form equation can yield multimodal and non-
normal distributions of the parameter estimates, even with very large sample size,
so that asymptotic theory is not reliable; (iii) in the presence of many instrumen-
tal variables, estimating in a first-stage a reduced form equation can give rise to
a large bias. Gautier and Tsybakov (2011) rely on a new method which is robust
to (ii) and (iii) in order to treat the more challenging case of a high-dimensional
structural equation. Confidence sets can be obtained for arbitrary weak and numer-
ous instrumental variables, whether or not the condition Cov[Z,U] = 0 gives rise
to a unique 3. Therefore, it is also possible to handle the case where the dimension
of Z is smaller than the dimension of X, which can yield identification of 8 under
sparsity of the structural equation (14.14) or other shape restrictions. To deal with
possibility of (i), a high-dimensional extension of the Sargan and Hansen method
is developed.

There is much interest in the treatment effects literature on heterogeneous treat-
ment effects, and variable selection methods can also be applied in such cases. For
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example, variable selection methods can be applied to estimating the propensity
score when the treatment variable takes on a small number of levels. Moreover,
variable selection methods can be applied to both propensity score estimation and
regression function estimation to obtain so-called doubly robust estimators. Un-
like the linear, additive equation (14.11), methods that weigh by the inverse of the
propensity score allow for heterogeneous treatment effects. See, for example, the
papers by Farrell (2015) and Athey and Imbens (2015).

Besides these high-dimensional problems, let us mention another important is-
sue which arises in connection with the availability of big data sets, namely, to
determine whether the accumulation of data, say, over an entire population, affects
precision of estimates. Abadie et al. (2014) analyse how to compute uncertainty in
empirical situations where the sample is the entire population and where the regres-
sion function is intended to capture causal effects. Other contributions on Causal
Inference in a big data setting use machine-learning methods. A recent example
is the work by Athey and Imbens (2015). There are many open challenges in this
area and pointers to recent progress are available from the site of the Sackler Col-
loquium on “Drawing Causal Inference from Big Data”, organised in March 2015
at the US National Academy of Science in Washington.?

The previous discussion has focused on cross-sectional data, but empirical re-
searchers attempting to estimate causal effects often rely on panel data that exploit
changes in policies over time. An important component of panel data models is al-
lowing for time-constant, unobserved heterogeneity. Belloni et al. (2014a) propose
first differencing a linear unobserved effects equation to remove additive hetero-
geneity, and then using variable selection methods, such as Lasso, to allow for
correlation between unobserved heterogeneous trends and unknown functions of
observed covariates — including the policy variable or variables being studied. The
approach seems promising. So far, such methods have been applied to linear mod-
els with relatively few sources of heterogeneity.

14.4 Prediction

Despite the recent advances in identification and causality in big data settings that
we have just reviewed, it is fair to say that the literature in the field is mainly
focused on prediction. Using the same notation as above, the problem consists in
computing the conditional expectation

E(Y|W,X). (14.15)

3 See http://www.nasonline.org/programs/sackler-colloquia/completed_colloquia/Big-data.htm]
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Forecasting has a long tradition in economics, especially in macroeconomics. In-
deed many economists in the private sector and policy institutions are employed to
this task. In forecasting, robustness is typically tested in out-of-sample validation
studies, a perspective typically ignored in empirical microeconomics. For desirable
out-of-sample performance, models must respect the principle of parsimony (i.e.,
contain a rather small number of free parameters) to avoid overfitting. However,
the curse of dimensionality problem naturally arises from lags, non-linearities, and
the presence of many potentially relevant predictors.

The recent literature has suggested methods to deal with the curse of dimen-
sionality issue in dynamic models. Here we should mention dynamic factor mod-
els cited earlier and, more recently, large Bayesian vector autoregressive models.
Following the work of De Mol et al. (2008), Banbura et al. (2010) have shown
empirically how to set priors to estimate a vector autoregressive model with large
data sets. The idea there is to set the degree of ‘shrinkage’ in relation to the dimen-
sion of the data. Intuitively this implies to set priors so as to avoid overfitting, but
still let the data be informative. Giannone et al. (2015) have developed a formal
procedure to conduct inference for the degree of shrinkage. These models have
many applications in economics beyond pure forecasting and can be used to de-
sign counterfactuals for policy analysis and identification of exogenous shocks and
dynamic propagation mechanisms. Large data allow to better identify exogenous
shocks since it can accommodate for realistic assumptions on agents’ information
set (for an analysis on this point, see Forni et al. (2009)).

One very successful application of the large models described above (if mea-
sured by impact on modelling in policy institutions and the financial industry)
has been ‘now-casting’. Now-casting is the forecast of the present (present quarter
or present month) based on data available at different frequencies (daily, weekly,
monthly and quarterly). A now-cast produces a sequence of updates of predictions
in relation to the publication calendar of the data. This allows to exploit the time-
liness of certain data releases to obtain an early estimate of those series which are
published with a delay with respect to the reference quarter such as GDP or the
reference month such as employment (see Giannone et al. (2008) and subsequent
literature). Empirical results show that exploiting survey data, which are published
earlier than hard data, allows to obtain an accurate early estimate at the beginning
of the quarter and, as new data are released through time, the estimates become
more accurate (see Banbura et al. (2013) for a review of the literature). In princi-
ple, non-standard data such as Google queries or twitters, due to their timeliness,
could be exploited in this context. However, once the details of the problem (mixed
frequency, non-synchronous data releases) are appropriately modelled and relevant
timely indicators considered, there is no evidence that Google indexes used suc-
cessfully in simpler setup by Choi and Varian (2012) and Scott and Varian (2014)
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have any additional predictive value Li and Reichlin (2015), but more research is
needed on this topic.

It has to be noted that most of the applied work on the methods mentioned
have concerned traditional time series (macroeconomic variables, possibly disag-
gregated by sectors or regions, financial variables and surveys) and rarely with
dimension above 150. Empirical results show that, in general, forecasts of macroe-
conomic variables based on data sets of medium dimension (of the order of 20)
are not outperformed by forecasts based on 100 or more variables although the di-
mension helps especially in now-casting where successful results rely on the use
of timely information. Moreover, as mentioned in Section 14.2, Lasso regressions
provide unstable variable selection due to the near-collinear feature of macroeco-
nomic data. Important empirical issues are also related to robustness with respect
to variable transformation such as de-seasonalisation or detrending as well as non-
linearity. Potentially, machine-learning type of techniques could be useful in this
set-up but this is open to future research. The literature is too much at an early stage
to provide a definitive answer on the potentials of new data and new methods in this
context but it is our view that any successful applications have to incorporate the
detailed micro-structure of the problem. In now-casting, for example, this implies
taking care of mixed frequency, non-synchronicity of releases and other details.

In microeconometrics the emphasis on predictions and out-of-sample is newer
than in macro but studies using big data are more numerous. Predictions based on
large cross-section of data have been successfully obtained for various problems.
Examples can be found in the papers by Varian (2014), by Einav and Levin (2014)
and by Kleinberg et al. (2015b), as well as in the references therein. The last pa-
per discusses a problem of health economics, namely the prediction of whether
replacement surgery for patients with osteoarthritis will be beneficial for a given
patient or not, based on more than 3000 variables recorded for about 100 000 pa-
tients. Another policy decision based on prediction is studied by Kleinberg et al.
(2015a) who show that machine-learning algorithms can be more efficient than a
judge in deciding who has to be released or go to jail while waiting for trial because
of danger of committing a crime in the meanwhile. Another application would be
to predict the risk of unemployment for a given individual based on a detailed per-
sonal profile.

It should be remarked that machine-learning algorithms present several advan-
tages: they focus on a best-fit function for prediction, possibly handling very rich
functional forms, and have built-in safeguards against overfitting so that they can
handle more variables than data points. Moreover, they do not require too many as-
sumptions about the data generating process as it is the case in classical economet-
rics. One should be aware, however, that precisely because of their great generality
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and versatility, they may not be optimally tailored for the specificities of a given
problem.

Another trend is to make use not only of more data, but also of new types of data.
Many types of data are nowadays passively collected and are largely unexploited,
such as those provided by social networks, scanner data, credit card records, web
search queries, electronic medical records, insurance claim data, etc. They could
complement or even be a substitute for more traditional and actively collected data.
The mining of language data, such as online customer reviews, is also a challenge
and can be used for so-called ‘sentiment analysis’ (see e.g., Pang et al. (2002)).

Returning to the issue of causality discussed in the previous section, it should be
noted that prediction algorithms also provide new ways to test theories. Indeed, one
can see how well one can predict the output Y with all variables but X and/or how
much the inclusion of a given variable (or a group of variables) X helps improving
the prediction. One should be cautious, however, in drawing conclusions: the fact
that a variable is not among the best predictors does not necessarily mean that it is
not ‘important’. For example, when Varian (2014) discusses differences in race in
mortgage applications, saying that race is not among the best predictors is not the
same as saying that evidence of discrimination does not exist.

In addition, the completeness of a given theory could be tested by confronting
its predictions abilities against an atheoretical benchmark provided by machine
learning.

14.5 Computational Issues

The collection and analysis of bigger and bigger data sets pose not only method-
ological challenges but obviously also computational challenges. Nevertheless,
since there has been in the same time a tremendous increase in computing capabil-
ities, researchers can handle larger and larger data sets using standard software and
desktop computers. For example, maximum-likelihood estimation of dynamic fac-
tor models could be performed only with a small set of variables up to the late 90s
(Stock and Watson (1989)), while recent research has shown how these models can
be easily estimated in a high-dimensional context (Doz et al. (2012); Jungbacker
and Koopman (2015)). In parallel with this increase in computing power, signifi-
cant progress has been made in the development of fast and reliable numerical al-
gorithms which scale well with the dimension. In particular, considerable research
effort has been dedicated to improving the speed and performance of algorithms
for Lasso regression.

In many situations, however, computational capability still represents an impor-
tant constraint on our ability to handle and analyse big data sets. Methods that can



Big Data in Economics: Evolution or Revolution? 19

handle thousands of variables may become inappropriate when moving to millions
of variables. Moreover, some procedures can be particularly demanding in terms
of computational complexity when applied to more than a handful of data. This is
the case e.g., for complex latent variable models for which closed-form solutions
are not available. In this context there is a demand for extra computing power. Un-
fortunately the growth rate in computational capability of integrated circuits (CPU
microchips) seems to be slowing down. However, thanks to technological progress
driven by the video-game industry, new and fast growing computational power is
coming from so-called graphics processing units (GPU) which allow for parallel
computation and are easy to program. The general idea is that often it is possible
to divide large problems into smaller independent tasks, which are then carried out
simultaneously.

Splitting large problems into small ones is particularly natural in simulation-
based Bayesian methods, which have recently attracted growing interest (see e.g.,
Hoogerheide et al. (2009); Lee et al. (2010); Durham and Geweke (2013)). In
Bayesian methods, the reduction in dimensionality is made by assuming prior dis-
tributions for the unknown parameters to infer and, whereas the computation of the
so-called MAP (Maximum a Posteriori) estimator requires solving an optimisa-
tion problem, the computation of conditional means and covariances only requires
integration, but in a high-dimensional space. For this task, one uses stochastic sim-
ulation methods and artificially generated random variables. Since the early days
of Monte Carlo methods, there has been substantial development of new more so-
phisticated Sequential Monte Carlo and Particle Filter methods, allowing to deal
with complex posterior distributions and more flexible econometric models.

Examples of successful applications of simulation-based Bayesian methods are
reported by Billio et al. (2013a,b) and Casarin et al. (2013, 2015). The paper by
Casarin et al. (2015) deals with the problem of conducting inference on latent time-
varying weights used to combine a large set of predictive densities for 3712 indi-
vidual stock prices, quoted in NYSE and NASDAQ), using 2034 daily observations
from March 18, 2002 until December 31, 2009. The authors find substantial fore-
cast and economic gains and also document the improvement in computation time
achieved by using parallel computing compared to traditional sequential computa-
tion. Another application to nowcasting is discussed by Aastveit et al. (2014) who
show that a combined density now-cast model works particularly well in a situa-
tion of early data releases with relatively large data uncertainty and model incom-
pleteness. Empirical results, based on US real-time data of 120 leading indicators,
indicate that combined density nowcasting gives more accurate density now-casts
of US GDP growth than a model selection strategy and other combination strate-
gies throughout the quarter with relatively large gains for the two first months of
the quarter. The model also provides informative signals on model incompleteness



20  De Mol, Gautier, Giannone, Mullainathan, Reichlin, van Dijk, and Wooldridge

during recent recessions and, by focusing on the tails, delivers probabilities of neg-
ative growth, that provide good signals for calling recessions and ending economic
slumps in real time.

14.6 Conclusions

Data are essential for research and policy. Definitely there is a trend towards empir-
ical economics, and from this perspective, the advent of big data offers an extraor-
dinary opportunity to take advantage of the availability of unprecedented amounts
of data, as well as of new types of data, provided of course that there is easy access
to them, in particular for academic research.

We have focused in this chapter on some methodological aspects of the analysis
of large data sets. We have argued that many of the issues raised by big data are
not entirely new and have their roots in ideas and work from the last decades. On
the applied side, the applications with truly big data are still rare in economics
although more research has been devoted in the last years to the use of relatively
large but traditional data sets.

While in many problems the focus is shifting from identification towards predic-
tion, which is a more ‘revolutionary trend’, causality is still considered important
and this duality is the matter for interesting debates in econometrics.

As concerns algorithmic and computational issues, the field of ‘machine learn-
ing’, a popular heading covering very different topics, is and will remain helpful
in providing efficient methods for mining large data sets. However, one should be
careful and not blindly import methodologies from other fields, since economic
data structures have their own specificities and need appropriately designed re-
search tools .

Undoubtedly, this research area calls for a lot of new, exciting and perhaps un-
expected developments, within and outside the framework sketched here, and, if
the data sets are big, the challenges ahead, in optimally exploiting the information
they contain, are even bigger.
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